
hhh

Puma - A Generator
for the Transformation
of Attributed Trees

J. Grosch

hhh

hhh
GESELLSCHAFT FÜR MATHEMATIK
UND DATENVERARBEITUNG MBH

FORSCHUNGSSTELLE FÜR
PROGRAMMSTRUKTUREN
AN DER UNIVERSITÄT KARLSRUHE

hhh

Project

Compiler Generation

hhh

Puma - A Generator for the Transformation of Attributed Trees

Josef Grosch

Nov. 22, 1991

hhh

Report No. 26

Copyright  1991 GMD

Gesellschaft für Mathematik und Datenverarbeitung mbH
Forschungsstelle an der Universität Karlsruhe

Vincenz-Prießnitz-Str. 1
D-7500 Karlsruhe

Puma 1

Puma - A Generator for the Transformation of Attributed Trees

1. Introduction

Puma is a tool supporting the transformation and manipulation of attributed trees. It is based on
pattern-matching, unification, and recursion. Puma cooperates with the generator for abstract
syntax trees ast [Gro91], which already supports the definition, creation, and storage of attri-
buted trees. Puma adds a concise notation for the analysis and synthesis of trees. The
pattern-matching capability facilitates the specification of decision tables. Puma provides the
implicit declaration of variables, strong type checking with respect to trees, and checks the sin-
gle assignment restriction for variables. The output is the source code of a program module writ-
ten in one of the target languages C or Modula-2. This module implements the specified
transformation routines. It can be integrated easily with arbitrary program code. The generated
routines are optimized with respect to common subexpression elimination and tail recursion.

The intended use of this tool proceeds in three steps: First, a tree is constructed either by a
parser, a previous transformation phase, or whatever is appropriate. Second, the attributes in the
tree are evaluated either using an attribute grammar based tool, by a puma specified tree traver-
sal and attribute computations, or by hand-written code. Third, the attributed tree is transformed
or mapped to another data structure by a puma generated transformation module. These steps
can be executed one after the other or more or less simultaneously. Besides trees, puma can han-
dle attributed graphs as well, even cyclic ones. Of course the cycles have to be detected in order
to avoid infinite loops. A possible solution uses attributes as marks for nodes already visited.

A transformer module can make use of attributes in the following ways: If attribute values
have been computed by a preceding attribute evaluator and are accessed in read only mode then
this corresponds to the three step model explained above. A puma generated module can also
evaluate attributes on its own. A further possibility is that an attribute evaluator can call puma

subroutines in order to compute attributes. This is especially of interest when attributes depend
on tree-valued arguments.

The tool supports two classes of tree transformations: mappings and modifications. Tree
mappings map an input tree to arbitrary output data. The input tree is accessed in read only
mode and left unchanged. Tree modifications change a tree by e. g. computing and storing attri-
butes at tree nodes or by changing the tree structure. In this case the tree data structure serves as
input as well as output and it is accessed in read and write mode.

The first class covers applications like the generation of intermediate languages or machine
code. Trees are mapped to arbitrary output like source code, assembly code, binary machine
code, linearized intermediate languages like P-Code, or another tree structure. A further variant
of mapping is to emit a sequence of procedure calls which are handled by an abstract data type.

The second class covers applications like semantic analysis or optimization. Trees are
decorated with attribute values, properties of the trees corresponding to context conditions are
checked, or trees are changed in order to reflect optimizing transformations.

The contents of this manual is organized as follows: Section 2 gives an overview and
describes the cooperation of puma and ast. Section 3 describes the specification language of
puma. Section 4 describes the output of puma. Section 5 contains the UNIX manual page.
Appendix 1 contains the syntax summary. Appendix 2 presents an example from a compiler for
MiniLAX. Appendix 3 lists the type specific equality operations for the target languages C and
Modula-2.

2. Overview

The input of a transformer is a tree which might be decorated with attributes. The structure of
the legal input trees and the desired transformation are described in two separate documents.

Puma 2

Tree
Spec

ast Tree.TS puma

Trafo
Spec

Tree.h Tree.c Trafo.h Trafo.c

compile
+ link

executable
program

Fig. 1: Cooperation of puma and ast

Both documents are processed by the separate tools ast and puma. The cooperation between
those tools is depicted in Figure 1. The structure of the trees including their attributes is
described by a tree grammar and is fed into ast. Ast produces the source code of a module that
defines, stores, and manipulates the specified tree and an internal description of the tree in the
file Tree.TS. This file and the description of the intended transformation are the input of puma.
Puma generates a module that implements the specified transformation by a set of subprograms
which use the tree module produced by ast. The two generated modules, which are named Tree

and Trafo by default, consist of two files: The header, interface, or definition part and the imple-
mentation part. Both modules must be compiled and linked, eventually with other modules, to
yield an executable program.

For the following we assume the reader to be familiar with the tool ast. Ast’s input
language is used to define the node types, the subtype relation between the node types, and the
children and attributes of the node types including their data types. This input language is
described in the ast user manual [Gro91].

3. Input Language

The following sections define the syntax and the semantics of a puma specification. Appendix 1
contains a summary of the precise syntax of the input language in BNF notation.

Puma 3

3.1. Notation

An EBNF notation is used in the following to describe the syntax of a puma specification. The
meaning of the meta symbols is as follows:

= introduces the right-hand side of a grammar rule
| introduces alternatives (usually used to separate alternatives)
[] square brackets enclose optional parts
{ } curly brackets denote repetition zero, one, or more times
non alpha-numeric characters

terminal symbol
’ character ’ terminal symbol
all upper-case word terminal symbol
other word nonterminal symbol

3.2. Lexical Conventions

The input of puma consists of identifiers, numbers, keywords, operators, delimiters, comments,
white space, and so called target code.

Identifiers are sequences of letters, digits, and underscore characters _ that start with a letter
or an underscore character _. The case of the letters is significant:

x NoName k2 mouse_button

Numbers comprise integers and reals in decimal notation. They are written as in the target
language:

0 007 1991 31.4E-1

The following words are reserved as keywords and may not be used as identifiers:

AND BEGIN CLOSE DIV EXPORT
EXTERN FAIL FUNCTION GLOBAL IMPORT
IN LOCAL MOD NIL NL
NOT OR PREDICATE PROCEDURE PUBLIC
REF REJECT RETURN TRAFO TREE

Operators are either symbols from the following list or sequences of characters introduced by a
backslash \ and terminated by white space. Escaped operators are used for operators not known
to puma. They are written to the output with the backslash \ removed.

! != # % & && * + ++ - --
-> . / < << <= <> = == > >=
>> ˆ | || AND DIV IN MOD NOT OR

Examples of escaped operators:

\, \? \: \(void) \(int*) \(struct \node)

The following characters are delimiters:

() , : := :- ; => ? [] _ { }

The delimiters .. and ... can be used alternatively, as can be ? and :-. Comments are charac-
ters enclosed in /* and */ as in C. They may not be nested:

/* comment */

Target code are declarations, statements, or expressions written in the target language and
enclosed in curly brackets { }. Target code may contain curly brackets { } as long as these are
either properly nested or contained in strings or in character constants. Unnested curly brackets
outside of strings or character constants have to be escaped by a backslash character \. In general

Puma 4

all characters outside of strings or character constants may be escaped by a backslash character \.
This escape mechanism is not necessary in strings and character constants. Target code is usu-
ally copied unchecked and unchanged to the output.

{ x = 1; }
{ { char c = ’}’; } }
{ printf ("}\n"); }

White space characters like blanks, tab characters, form feeds, and return characters are ignored.

3.3. Structure

The input of puma consists of a header, target code sections, and a list of subroutines.

Syntax:

Input = [TRAFO Ident] [TREE Idents] [PUBLIC Idents] [EXTERN Idents]
{ TargetCodes } { Subroutine }

Idents = Ident { , Ident }

The identifier behind the keyword TRAFO determines the name of the generated module.
The default name is Trafo.

The identifiers behind the keyword TREE refer to the tree modules to be manipulated. A
puma module can not only handle one tree definition but an arbitrary number. There must be a
tree grammar for every tree and they all must have been converted to their internal format with
ast. More precisely, those names refer to so-called views of a tree definition. Roughly speaking,
a view selects a subset of a tree definition. See the documentaion of ast for a description of this
concept. If the keyword TREE is missing then the following serves as default:

TREE Tree

Therefore an empty list of tree definitions has to be given as:

TREE

The identifiers behind the keyword PUBLIC specify those subroutines that should become
visible from outside the module. External declarations for these subroutines are inserted
automatically in the interface part of the generated module.

The identifiers behind the keyword EXTERN specify those identifiers of global, local, or
external variables and subroutines that are used in some subroutines but that are not declared
from the point of view of puma. They may be used in expressions and statements that are
checked by the tool without causing a message.

Example:

TRAFO ICode TREE Tree Definitions PUBLIC Code
EXTERN ADD CHK ENT Emit

3.4. Target Code

A puma specification may contain several sections containing target code. Target code is code
written in the target language. It is copied unchecked and unchanged to certain places in the gen-
erated module.

Puma 5

Syntax:

TargetCodes =
| EXPORT TargetCode
| GLOBAL TargetCode
| BEGIN TargetCode
| CLOSE TargetCode

The meaning of the different sections is as follows:

EXPORT: declarations to be included in the interface part.

GLOBAL: declarations to be included in the implementation part at global level.

BEGIN: statements to initialize the declared data structures.

CLOSE: statements to finalize the declared data structures.

Example in C:

EXPORT { typedef int MyType; extern MyType Sum; }
GLOBAL {# include "Idents.h"

MyType Sum; }
BEGIN { Sum = 0; }
CLOSE { printf ("%d", Sum); }

Example in Modula-2:

EXPORT { TYPE MyType = INTEGER; VAR Sum: MyType; }
GLOBAL { FROM Idents IMPORT tIdent; }
BEGIN { Sum := 0; }
CLOSE { WriteI (Sum, 0); }

3.5. Subroutines

A set of subroutines constitutes the main building blocks of a transformation. Like in program-
ming languages, subroutines are parameterized abstractions of statements or expressions. There
are three kinds of subroutines:

procedure : a subroutine acting as a statement
function : a subroutine acting as an expression and returning a value
predicate : a boolean function

Syntax:

Subroutine = Header [EXTERN Idents ;] [LOCAL TargetCode] { Rule }

Header =
| PROCEDURE Ident ([Parameters] [=> Parameters])
| FUNCTION Ident ([Parameters] [=> Parameters]) Type
| PREDICATE Ident ([Parameters] [=> Parameters])

Parameters = [REF] [Ident :] Type { , [REF] [Ident :] Type }

A subroutine consists of a header, an optional target code section, and a sequence of rules. The
header specifies the kind of the subroutine, its name, and its parameters. In case of a function,
the type of the result value is added. This type is restricted to types legal for function results in
the target language (usually simple types and pointers). Input and output parameters are
separated by the symbol =>. It suffices to give the type of a parameter. A name for the formal
parameter is optional. Usually input parameters are passed by value and output parameters are
passed by reference. The keyword REF can be used to pass input parameters by reference, too.
This might be necessary in case of tree modifications when an input tree is replaced by a newly
created one. The identifiers behind the keyword EXTERN specify those identifiers of global,
local, or external variables and subroutines that are used within the subroutine but that are not

Puma 6

declared from the point of view of puma. They may be used in expressions and statements that
are checked by the tool without causing a message. The target code section is copied in front of
the body of the generated subprogram and may e. g. contain local declarations.

Examples:

PROCEDURE Code (t: Tree) LOCAL { tObjects object; } ...
PREDICATE IsCompatible (Type, Type) ...
FUNCTION ResultType (Type, Type, int) Type ...
PROCEDURE ResultType (Type, Type, int => Type) ...

3.6. Types

Types are either predefined in the target language like int and INTEGER, or user-defined like
MyType, or they are tree types like Expr. A tree type is described by the name of a tree
definition, a single node type, or a list of node types enclosed in brackets []. In case of ambigui-
ties the latter two kinds may be qualified by preceding the name of the tree definition. In every
case a tree-type defines a set of legal node types. The name of a tree definition refers to every
node type that is defined there. A single node type yields a set with just this one element and a
list of node types yields the union of all list elements.

Syntax:

Type =
| TreeType
| UserType

TreeType =
| Ident
| [Ident .] Ident
| [Ident .] ’[’ Idents ’]’

UserType = Ident

Examples:

int /* predefined type */
MyType /* user defined type */
Tree /* tree type */
Expr /* node type */
Tree.Expr /* qualified node type */
[Stats, Expr] /* set of node types */
Tree.[Stats, Expr] /* qualified set of node types */

3.7. Rules

A rule behaves like a branch in a case or switch statement. It consists of a list of patterns (non-
terminal Patterns), a list of expressions, a return expression in case of a function, and a list of
statements. Several neighbouring rules with the same list of expressions, return expression, and
list of statements may share those parts. A list of a list of patterns (nonterminal PatternList) is
equivalent to a sequence of rules having the sublists as patterns and sharing the other parts. Pat-
terns and expressions may be either positional or named. The named entities have to follow the
positional ones. For every position of a pattern or an expression at most one entity may be given.
The named elements are transformed into their positional form before type checking is per-
formed. The parts of a rule may be given in almost any order as described by the exact syntax in
Appendix 1.

The number of patterns must agree with the number of input parameters, and the types of
the elements of those lists must be pairwise compatible. The number of expressions must agree
with the number of output parameters, and the types of the elements of those lists must be

Puma 7

pairwise compatible. The type of the expression after RETURN has to be compatible with the
result type of a function. The type s of a pattern or an expression is said to be compatible to the
type t of a formal parameter if s is a subtype of t (s ⊆ t).

Syntax:

Rule = [PatternList] [=> Exprs] [RETURN Expr] ? { Statement ; } .

PatternList = Patterns { ; Patterns }

Patterns =
| Pattern { , Pattern } { , Ident := Pattern }
| Ident := Pattern { , Ident := Pattern }

Exprs =
| Expr { , Expr } { , Ident := Expr }
| Ident := Expr { , Ident := Expr }

The semantics of a rule is as follows: A rule may succeed or fail. It succeeds if all its pat-
terns, statements, and expressions succeed - otherwise it fails. The patterns, statements, and
expressions are checked for success in the following order: First, the patterns are checked from
left to right. A pattern succeeds if it matches its corresponding input parameter as described
below. Second, the statements are executed in sequence as long as they succeed. The success of
statements is defined below. Third, the expressions are evaluated from left to right and their
results are passed to the corresponding output parameters. In case of a function, additionally the
expression after RETURN is evaluated and its result is returned as value of the function call.
The success of expressions is defined below, too. If all elements of a rule succeed then the rule
succeeds and the subroutine returns. If one element of a rule fails the process described above
stops and causes the rule to fail. Then the next rule is tried. This search process continues until
either a successful rule is found or the end of the list is reached. In the latter case the behaviour
depends on the kind of the subroutine:

A procedure signals a runtime error if option ’f’ is set, otherwise it does nothing.
A predicate returns false.
A function signals a runtime error.

There is one exception to this definition of the semantics which is explained later. Note, if a
predicate fails then the values of its output parameters are undefined.

Examples:

PROCEDURE Code (t: Tree)
Plus (Lop, Rop) ? Code (Lop); Code (Rop); Emit (ADD); .
Minus (Lop, Rop) ? Code (Lop); Code (Rop); Emit (SUB); .
...

PREDICATE IsCompatible (Type, Type)
Integer , Integer ?.
Real , Real ?.
Boolean , Boolean ?.
Array (t1, Lwb, Upb, _), Array (t2, Lwb, Upb, _) ? IsCompatible (t1, t2); .

FUNCTION ResultType (Type, Type, int) Type
Integer , Integer , { Plus } RETURN Integer ?.
Real , Real , { Plus } RETURN Real ?.
Integer , Integer , { Times } RETURN Integer ?.
Real , Real , { Times } RETURN Real ?.
Integer , Integer , { Less } RETURN Boolean ?.
Real , Real , { Less } RETURN Boolean ?.

Puma 8

3.8. Patterns

A pattern describes the shape at the top or root of a subtree. A pattern can be a decomposition of
a tree, the keyword NIL, a label or a variable, one of the don’t care symbols _ or .., or an
expression. A decomposition is written as a node type followed by a list of patterns in
parenthesis (and). Optionally, the node type may be qualified by a tree name and preceded by a
label.

Syntax:

Pattern =
| [Label] [Ident .] Ident [([Patterns])]
| [Label] NIL
| Ident
| _
| ..
| Expr

Label =
| Ident :
| Ident :>

The match between a pattern and a value is defined recursively depending on the kind of the pat-
tern:

- A decomposition with a node type t matches a tree u with a root node of type s if s is a sub-
type of t (s ⊆ t) and all subpatterns of t match their corresponding subtrees or attributes of
u. If the node type is preceded by a label l then a binding is established between l and u
which defines the label l to refer to the tree u. If the label l is followed by a colon : then l
has the type of u. If the label l is followed by the symbol :> then l has the type that is legal
at this location. This is either the type of a parameter or the type of a node type’s child.

- The pattern NIL matches the values NoTree or NIL. If NIL is preceded by a label l then a
binding is established between l and the parameter or child matching NIL. l has the type
that is legal at this location. This is either the type of a parameter or the type of a node
type’s child.

- The first occurrence of a label l in a rule matches an arbitrary subtree or attribute value u.
A binding is established between l and u which defines the label l to refer to the value u.
The label can be used later to access the associated value. All further occurrences of the
label l within patterns of this rule match a subtree or an attribute value v only if u is equal
to v. The equality for trees is defined in the sense of structural equivalence. Two attributes
are equal if they have the same values. This so-called non-linear pattern matching has to be
enabled by an option. Without this option all further occurrences of a label l are treated as
error.

- The don’t care symbol _ matches one arbitrary subtree or attribute value.

- The don’t care symbol .. matches any number of arbitrary subtrees or attribute values.

- An expression matches a parameter or an attribute if both have the same value. The equal-
ity of values is defined as a type specific operation (see section 3.11.).

The ambiguity between a node type without a list of patterns in parentheses and a label is
resolved in favor of the node type, by default. A node type t without a list of subpatterns is
treated as t (..). Puma has an option that disables this behaviour. Then all node types require
parentheses, otherwise they are considered as labels.

Puma 9

Examples:

Binary /* a node type */
Tree.Binary
Binary (Lop, Rop, Operator)
a:Binary (_, b:>Binary (Lop, ..), Operator)

/* a, b, Lop, and Operator are labels */
/* a is of type Binary */
/* b is of type Expr */

NIL
X /* a label */
k + 2
{ Times } /* a named constant */

3.9. Expressions

Expressions denote the computation of values or the construction of trees. Binary and unary
operations as well as calls of external functions are written as in the target language. Calls of
puma functions and predicates distinguish between input and output arguments. Named argu-
ments are not allowed in calls. The syntax for tree composition is similar to the syntax of pat-
terns. Again, the node type may be qualified by a tree name.

Syntax:

Expr =
| [Ident .] Ident [([Exprs])]
| NIL
| Ident
| _
| ..
| Expr ([Exprs] [=> Patterns])
| Expr Operator Expr
| Operator Expr
| Expr Operator
| Expr [Exprs]
| (Expr)
| Number
| String
| TargetCode
| Ident :: Ident

The semantics of the different kinds of expressions is as follows:

- A node type creates a tree node and provides the children and attributes of this node with
the values given in parenthesis. Again a missing list in parentheses is treated as (..).

- NIL represents the value NoTree or NIL.

- A label refers to the expression it was bound to upon its definition.

- A function or predicate call must be compatible with the corresponding definition in terms
of the numbers of expressions and patterns as well as their types. A function call evaluates
the expressions corresponding to input parameters, passes the results to the function, and
executes the function. Upon return from the function the result value of the function deter-
mines the result of this expression. The values of the output parameters that the function
returns are matched against the actual patterns of the function call. If one pair does not
match the call fails. Labels in the patterns may establish bindings that enable to refer to the
output parameters or subtrees thereof.

- The don’t care symbols specify that no computation should be executed, either for one or
for several expressions. The result values are undefined.

Puma 10

- The most common binary and unary operators (prefix and postfix) of the target language as
well as array indexing and parentheses are known to puma. They are passed unchanged to
the output.

- A target code expression, a number, or a string is evaluated as in the target language.

- The construct Ident :: Ident can be used to refer to children or attributes that are not
matched by a label. This can be of interest because of notational brevity or because match-
ing is impossible. The reason for the latter case can arise when a subset of a tree definition
is presented to puma using the concept of views. The first identifier is a label that is bound
to a tree (node). The second identifier is the name of a child or of an attribute of this node
type.

In case of node types, labels for tree values, and functions returning tree values, puma does type
checking. For user types, target code expressions or target operators no type checking is done by
puma but (hopefully) later by the compiler. An expression that does not contain calls of puma

functions or predicates always succeeds. An expression containing those calls succeeds if all the
calls succeed − otherwise it fails.

Examples:

Binary /* a node composition */
Tree.Binary /* a node composition */
Binary (X, Y, Z) /* a node composition */
NIL
X
ResultType (t1, t2) /* a function call */
_
k + 2
- k
k ++
a [x]
({ Times }) /* a named constant */
3.14
"abc"

3.10. Statements

Statements are used to describe conditions, to perform output, to assign values to attributes, and
to control the execution of the transformer via recursive subroutine calls. A statement is either a
condition denoted by an expression, a call of a procedure, an assignment, one of the keywords
REJECT or FAIL, a String or the keyword NL, a target code statement, or declarations of vari-
ables. Named arguments are not allowed in calls. Every kind of statement may succeed or fail
as described below.

Syntax:

Statement =
| Expr
| Expr ([Exprs] [=> Patterns])
| Expr := Expr
| REJECT
| FAIL
| String
| NL
| TargetCode
| Declarations

Declarations = Ident : Type { , Ident : Type }

Puma 11

There are some syntactic ambiguities: Target code in curly brackets { } is considered as tar-
get code statement instead of as target code expression. To obtain the latter meaning the expres-
sion should be enclosed in parentheses (). Subroutine calls are treated according to their
declaration: Predicates and functions are treated as conditions, procedures and external subrou-
tines are treated as procedure calls. If external subroutines should be considered as expressions,
the call should be enclosed in parentheses (), too. A string is considered as a special kind of
statement instead of as a normal expression.

- Conditions are denoted by expressions and can be used to determine properties that can not
be expressed with pattern matching alone. Patterns describe either shapes of a fixed size of
a tree or the equality between two values. Properties of trees of unlimited size and relations
like <, <= etc. have to be checked with conditions. The expression has to be of type
boolean or the call of a predicate. A condition succeeds if the expression evaluates to true -
otherwise it fails.

- For a procedure call the same rules as for a function call apply. It succeeds if the values of
all output parameters are matched by the corresponding patterns - otherwise it fails. A call
of an undefined subroutine is treated as a call of a procedure that is either defined externally
or in the GLOBAL target code section. Such a call is flagged by a warning message.

- An assignment statement evaluates its expression and stores this value at the entity denoted
by the identifier on the left-hand side. The identifier can denote

a global or a local variable,
an input or an output parameter, or
a label for an attribute or a subtree.

An assignment statement succeeds if the expression succeeds - otherwise it fails.

- The statement REJECT does nothing but fail. This way the execution of the current rule
terminates and control is passed to the next rule.

- The statement FAIL causes the execution of the current subroutine to terminate. This state-
ment is allowed in procedures and predicates, only. Depending on the kind of subroutine
the following happens:

A procedure terminates.
A predicate returns false.

- A string is an output statement that prints this string. (For details see section 3.13.).

- The keyword NL is an output statement that prints a newline character. (For details see
section 3.13.).

- A target code statement is executed as in the target language. It can be used for arbitrary
actions. In particular it can compute the value of an explicitly declared label (variable) by
means of implementation language code or calls of external subroutines. A target code
statement always succeeds.

- A declaration explicitly introduces a label or variable. It is similar to a label in a pattern
except that its value is undefined. It can be used also for the definition of temporary vari-
ables. The user is responsible that all labels receive values either by assignments or by tar-
get code statements. Declarations always succeed.

Note, statements and expressions may cause side effects by changing e. g. global variables,
local variables, the input tree, or by producing output. Those side effects are not undone when a
rule fails.

Puma 12

Examples:

IsCompatible (t1, t2) /* condition: predicate call */
(IsSimpleType (t)) /* condition: external call */
X < Y /* condition: expression */
({ X < Y }) /* condition: target code expression */
Code (Then) /* procedure call: internal */
printf ("hello") /* procedure call: external */
X := Y
{ X = Y; }
REJECT
FAIL
"hello"
NL
{ Code (Then); } /* unchecked internal call */
{ printf ("hello"); } /* unchecked external call */
Z: Expr
{ Z = mBinary (X, Y, Plus); }

3.11. Equality Operations

The equality between two trees is defined recursively: Two trees are equal if the node types of
the two root nodes are equal and all corresponding subtrees or attributes are equal.

The equality between attribute values is type specific. For every type name a separate
equality test is defined. Chosing different type names for one type introduces subtypes and
allows to treat attributes of different subtypes differently. The equality tests are defined by a
macro mechanism using the C preprocessor cpp:

define equalTYPE(a, b) a == b

TYPE is replaced by the concrete type name. a and b are formal macro parameters referring to
the attributes to be compared.

The equality test for the predefined types of a target language are predefined within puma

(see Appendix 3). For user-defined types, by default the following equality test is used:

in C:

define equalTYPE(a, b) memcmp ((char *) & a, (char *) & b, sizeof (a)) == 0

in Modula-2:

define equalTYPE(a, b) yyIsEqual (a, b)

Above procedures check values of arbitrary types by comparing the byte sequences.

It is possible to redefine the operations by including new macro definitions in the GLOBAL
section. The following example demonstrates the syntax for doing this.

Example in C:

GLOBAL {
typedef struct { short Line, Column; } tPosition;
define equaltPosition(a, b) a.Line == b.Line && a.Column == b.Column
}

Example in Modula-2:

GLOBAL {
TYPE tPosition = RECORD Line, Column: SHORTCARD; END;
define equaltPosition(a, b) (a.Line = b.Line) AND (a.Column = b.Column)
}

Puma 13

3.12. Begin Operations

Usually, a composition of a node specifies values for the attributes and children. Using dont’t
care symbols it is possible to omit these values. In this case the attributes and children are ini-
tialized by a macro mechanism using the C preprocessor cpp:

define beginTYPE(a)

TYPE is replaced by the concrete type name. a is the formal macro parameter referring to the
attribute or children to be initialized.

Initialization for attributes is predefined within puma by empty macros. Children are set to
NULL or NIL, by default:

in C:

define begintTYPE(a) a = NULL;

in Modula-2:

define begintTYPE(a) a := NIL;

It is possible to redefine the operations by including new macro definitions in the GLOBAL
section. The following example demonstrates the syntax for doing this.

Example in C:

GLOBAL {# define equaltint(a) a = 0;}

Example in Modula-2:

GLOBAL {# define equaltINTEGER(a) a := 0;}

3.13. Output Statements

The two builtin output statements "string" and NL are translated into macro calls:

yyWrite ("string");
yyWriteNl;

The macros are predefined as follows:

in C:

define yyWrite(s) (void) fputs (s, yyf)
define yyWriteNl (void) fputc (’\n’, yyf)

static FILE * yyf = stdout;

in Modula-2:

define yyWrite(s) IO.WriteS (yyf, s)
define yyWriteNl IO.WriteNl (yyf)

VAR yyf: IO.tFile;

yyf := IO.StdOutput;

By default the statements print on standard output using the library routines specified in the
macro definitions. This behaviour can be changed in two ways: The global variable yyf can be
assigned a new value that describes an arbitrary file. The macros can be redefined in the GLO-
BAL target code section.

4. Scopes

Scopes are regions of text which control the meaning of identifiers. A puma specification defines
three kinds of scopes which are nested in each other:

Puma 14

global scope
A complete puma specification defines a global scope. It contains all declarations included
in the GLOBAL target code section and all subroutine definitions. The subroutines can be
defined in any order.

local scope
Every subroutine definition introduces a local scope. It contains the names of the input and
output parameters and the declarations included in a LOCAL target code section.

rule scope
Every rule introduces a rule scope. It contains the labels used in this rule. Labels are
declared upon their first occurrence in patterns. They are visible only within a rule. Labels
in expressions represent using positions. Labels have to be declared or bound textually
before they are used.

For entities other then subroutine names and label names the scope rules of the target language
apply.

5. Output

From a given specification, puma generates a program module in one of the target languages C
or Modula-2 implementing the desired transformation. The subroutines in the sense of puma are
mapped to subroutines in the target language. Procedures yield procedures, functions yield func-
tions that return a value, and predicates yield boolean functions. These subroutines can be called
from other modules using the usual subroutine call syntax of the target language provided they
are exported: All arguments are separated by commas - the symbol => as separator between
input and output arguments is only required in calls processed by puma.

The types of the parameters are treated as follows: Predefined types or user defined types
remain unchanged. Node types or sets of node types are replaced by the name of the correspond-
ing tree type. This is a pointer to a union of record types. Input parameters are passed by value
and output parameters are passed by reference (VAR in Modula-2) by default. Input parameters
with the keyword REF are passed by reference, too.

In addition to the exported subroutines, a puma generated module exports the subroutines
BeginTRAFO and CloseTRAFO, where TRAFO is replaced by the module name. Both subrou-
tines contain the target code sections BEGIN and CLOSE. All target code sections and target
code representing expressions or statements are more or less copied unchecked and unchanged
to the generated output module. The only change is that in target code representing expressions
or statements label identifiers are replaced by access paths to the associated values.

The rules of a subroutine are treated like a comfortable case or switch statement. The code
generated for pattern matching is relatively simple. A naive implementation would just use a
sequence of if statements. This kind of code showed to be already rather efficient. Possible
optimizations are the clever use of switch statements and the elimination of common subexpres-
sions. Furthermore, tail recursion can be turned into iteration. Labels are replaced by access
paths to the associated values. The code for the construction of tree nodes is inserted in-line. It
is therefore efficient because no procedure calls are necessary for the creation of tree nodes.
Moreover, the transformer module independent of the tree module with respect to the presence
of procedures to create nodes and the classification of input attributes.

6. Usage

NAME

puma - a generator for the transformation of attributed trees

SYNOPSIS

Puma 15

puma [-options] [-l dir] [file]

DESCRIPTION

puma is a tool for the transformation of attributed trees which is based on pattern match-
ing and unification. It generates transformers (named Trafo by default) that map attri-
buted trees to arbitrary output. As this tool also has to know about the structure of the
tree this information is communicated from ast to puma via a file with the suffix .TS. If
file is omitted the specification is read from standard input.

OPTIONS

a generate all, same as -di (default)

d generate definition module

i generate implementation module

s suppress warnings

m use procedure MakeTREE to construct nodes (default is in-line code)

p allow node constructors without parentheses

f signal a runtime error if none of the rules of a procedure matches

k allow non-linear patterns

n check parameters for NoTREE (NIL) and treat as failure (tg compatibility)

w surround actions by WITH statements (tg compatibility)

e treat undefined names as error

v treat undefined names as warning

o list undefined names on standard output

t print tree definitions

r print patterns

q browse internal data structure

6 generate # line directives

7 touch output files only if necessary

8 report storage consumption

c generate C code (default is Modula-2)

h print help information

-ldir dir is the directory where puma finds its table files

FILES

<tree>.TS description of the tree grammar(s)

if output is in C:

<module>.h specification of the generated transformer module
<module>.c body of the generated transformer module

if output is in Modula-2:

<module>.md definition module of the generated transformer module
<module>.mi implementation module of the generated transformer module

SEE ALSO

Puma 16

J. Grosch: "Puma - A Generator for the Transformation of Attributed Trees", GMD
Forschungsstelle an der Universität Karlsruhe, Compiler Generation Report No. 26

J. Grosch: "Transformation of Attributed Trees Using Pattern Matching", GMD
Forschungsstelle an der Universität Karlsruhe, Compiler Generation Report No. 27

Puma 17

Appendix 1: Syntax Summary

/* parser grammar */

Trafo = TrafoName TreePart PublicPart ExternPart0 TargetCodes
Subroutines .

TrafoName = <
= .
= TRAFO Name .

> .
TreePart = <

= .
= ’TREE’ TreeNames .

> .
TreeNames = <

= .
= TreeNames ’,’ .
= TreeNames Name .

> .
PublicPart = <

= .
= PUBLIC Names .

> .
ExternPart0 = <

= .
= EXTERN Names OptSemiColon .

> .
ExternPart = <

= .
= EXTERN Names ’;’ .

> .
Names = <

= .
= Names ’,’ .
= Names Name .

> .
TargetCodes = <

= .
= TargetCodes ’EXPORT’ TargetCode .
= TargetCodes ’IMPORT’ TargetCode .
= TargetCodes ’GLOBAL’ TargetCode .
= TargetCodes ’BEGIN’ TargetCode .
= TargetCodes ’CLOSE’ TargetCode .

> .
Subroutines = <

= .
= Subroutines PROCEDURE Name ’(’ Parameters OutParameters ’)’

ExternPart LocalCode Rules .
= Subroutines ’FUNCTION’ Name ’(’ Parameters OutParameters ’)’

Type ExternPart LocalCode Rules .
= Subroutines PREDICATE Name ’(’ Parameters OutParameters ’)’

ExternPart LocalCode Rules .
> .
OutParameters = <

= .
= ’=>’ Parameters .

> .
Parameters = <

= .

Puma 18

= Mode Ident ’:’ Type .
= Mode Type .
= Mode Ident ’:’ Type ’,’ Parameters .
= Mode Type ’,’ Parameters .

> .
Mode = <

= .
= REF .

> .
Declarations = <

= Ident ’:’ Type .
= Ident ’:’ Type ’,’ Declarations .

> .
Type = <

= Ident .
= Ident ’.’ Name .
= ’[’ Names ’]’ .
= Ident ’.’ ’[’ Names ’]’ .

> .
LocalCode = <

= .
= ’LOCAL’ TargetCode .

> .
Rules = <

= .
= Rules Patterns2 ’.’ .
= Rules Patterns ’?’ Statements ’.’ .
= Rules Patterns ’=>’ Exprs2 ’.’ .
= Rules Patterns RETURN Expr ’;’ ’.’ .
= Rules Patterns ’=>’ Exprs ’?’ Statements ’.’ .
= Rules Patterns ’?’ Statements ’=>’ Exprs2 ’.’ .
= Rules Patterns ’=>’ Exprs RETURN Expr ’;’ ’.’ .
= Rules Patterns RETURN Expr OptSemiColon ’?’ Statements ’.’ .
= Rules Patterns ’?’ Statements RETURN Expr ’;’ ’.’ .
= Rules Patterns ’=>’ Exprs RETURN Expr OptSemiColon ’?’

Statements ’.’ .
= Rules Patterns ’=>’ Exprs ’?’ Statements RETURN Expr ’;’ ’.’ .
= Rules Patterns ’?’ Statements ’=>’ Exprs RETURN Expr ’;’ ’.’ .

> .
OptSemiColon = <

= .
= ’;’ .

> .
Patterns = <

= Exprs .
= Exprs ’;’ Patterns .

> .
Patterns2 = <

= Exprs ’;’ .
= Exprs ’;’ Patterns2 .

> .
Exprs = <

= ’..’ .
= ’..’ ’,’ .
= Expr .
= Expr ’,’ Exprs .
= NamedExprs .

> .
NamedExprs = <

= .
= Ident ’:=’ Expr .

Puma 19

= Ident ’:=’ Expr ’,’ NamedExprs .
> .
Exprs2 = <

= ’..’ .
= ’..’ ’,’ .
= Expr ’,’ Exprs2 .
= NamedExprs2 .

> .
NamedExprs2 = <

= .
= Ident ’:=’ Expr ’,’ NamedExprs2 .

> .
Expr = <

= PrefixExpr .
= Expr Operator PrefixExpr .

> .
PrefixExpr = <

= PostfixExpr .
= Ident ’:’ PostfixExpr .
= Ident ’:>’ PostfixExpr .
= Operator PrefixExpr .
= IncOperator PrefixExpr .

> .
PostfixExpr = <

= PrimaryExpr .
= PostfixExpr ’[’ Exprs ’]’ .
= PostfixExpr ’(’ Exprs ’)’ .
= PostfixExpr ’(’ Exprs ’=>’ Exprs ’)’ .
= PostfixExpr ’.’ Ident .
= PostfixExpr ’->’ Ident .
= PostfixExpr ’ˆ’ .
= PostfixExpr IncOperator .

> .
PrimaryExpr = <

= Ident .
= NIL .
= ’_’ .
= Number .
= String .
= Ident ’::’ Ident .
= ’{’ TargetCodes2 ’}’ .
= ’(’ Expr ’)’ .

> .
Statements = <

= .
= Statements Expr ’;’ .
= Statements Expr ’:=’ Expr ’;’ .
= Statements REJECT .
= Statements FAIL .
= Statements NL .
= Statements Declarations ’;’ .
= Statements ’{’ TargetCodes2 ’}’ ’;’ .
= Statements ’;’ .

> .
TargetCodes2 = <

= .
= TargetCodes2 Name Space ’::’ Space Ident .
= TargetCodes2 Name Space ’::’ Space .
= TargetCodes2 Name Space .
= TargetCodes2 ’::’ .
= TargetCodes2 TargetCode2 .

Puma 20

= TargetCodes2 WhiteSpace .
> .
Name = <

= Ident .
= String .

> .
Space = <

= .
= Space WhiteSpace .

> .

/* lexical grammar */

Ident : <
= Letter .
= ‘_‘ .
= Ident Letter .
= Ident Digit .
= Ident ’_’ .

> .
Number : <

= Integer .
= Real .

> .
Integer : <

= Digit .
= Integer Digit .

> .
Real : <

= Integer ’.’ Integer Exponent .
= Integer ’.’ Exponent .
= ’.’ Integer Exponent .

> .
Exponent : <

= .
= ‘E‘ ‘+‘ Integer .
= ‘E‘ ‘-‘ Integer .
= ‘E‘ Integer .

> .
String : <

= "’" Characters "’" .
= ’"’ Characters ’"’ .

> .
TargetCode : ’{’ Characters ’}’ .

TargetCode2 : Characters .

WhiteSpace : <
= ’ ’ .
= Tabulator .
= Newline .

> .

Operator : <
= ’!’ .
= ’!=’ .
= ’#’ .
= ’%’ .
= ’&’ .
= ’&&’ .
= ’*’ .

Puma 21

= ’+’ .
= ’-’ .
= ’/’ .
= ’<’ .
= ’<<’ .
= ’<=’ .
= ’<>’ .
= ’=’ .
= ’==’ .
= ’>’ .
= ’>=’ .
= ’>>’ .
= ’|’ .
= ’||’ .
= ’˜’ .
= AND .
= DIV .
= IN .
= MOD .
= NOT .
= OR .
= ’\’ Characters WhiteSpace .

> .
IncOperator : <

= ’++’ .
= ’--’ .

> .

Comment : ’/*’ Characters ’*/’ .

Characters : <
= .
= Characters Character .

> .

/* replacements */

’..’ : < = ’...’ . > .
’?’ : < = ’:-’ . > .

Puma 22

Appendix 2: Examples from MiniLAX

The following examples are taken from a compiler for the demo language MiniLAX. The com-
plete MiniLAX example can be found in [Gro90]:

The first part contains the abstract syntax of the language and the output attributes which
are assumed to be computed by a preceding semantic analysis phase. This information describes
the structure of the input to a puma generated transformer. It is written in the input language of
ast.

The second part specifies the generation of intermediate code. The abstract syntax tree is
mapped to I-Code which is a subset of P-Code.

The third part specifies routines to handle types. Types are internally represented by trees.
The routines are used by the semantic analysis phase which is implemented by an attribute
grammar.

Appendix 2.1: Abstract Syntax

MODULE AbstractSyntax /* -- */

TREE EXPORT {
include "Idents.h"
include "Positions.h"
}

GLOBAL {
include "Idents.h"
include "Positions.h"
include <stdio.h>
}

EVAL Semantics

PROPERTY INPUT

RULE

MiniLAX = Proc .
Decls = <

NoDecl = .
Decl = Next: Decls REV [Ident: tIdent] [Pos: tPosition] <

Var = Type .
Proc = Formals Decls Stats .

>.
>.
Formals = <

NoFormal = .
Formal = Next: Formals REV [Ident: tIdent] [Pos: tPosition] Type .

>.
Type = <

Integer = .
Real = .
Boolean = .
Array = Type OUT [Lwb] [Upb] [Pos: tPosition] .
Ref = Type OUT .
NoType = .
ErrorType = .

>.
Stats = <

NoStat = .

Puma 23

Stat = Next: Stats REV <
Assign = Adr Expr [Pos: tPosition] .
Call = Actuals [Ident: tIdent] [Pos: tPosition] .
If = Expr Then: Stats Else: Stats .
While = Expr Stats .
Read = Adr .
Write = Expr .

>.
>.
Actuals = <

NoActual = [Pos: tPosition OUT] .
Actual = Next: Actuals REV Expr .

>.
Expr = [Pos: tPosition] <

Binary = Lop: Expr Rop: Expr [Operator: short] .
Unary = Expr [Operator: short] .
IntConst = [Value OUT] .
RealConst = [Value: double OUT] .
BoolConst = [Value: bool OUT] .
Adr = <

Index = Adr Expr .
Ident = [Ident: tIdent] .

>.
>.
Coercions = <

NoCoercion = .
Coercion = Next: Coercions OUT <

Content = . /* fetch contents of location */
IntToReal = . /* convert integer value to real */

>.
>.

END AbstractSyntax

MODULE Output /* -- */

PROPERTY OUTPUT

DECLARE
Formals Decls = [Decls: tObjects THREAD] .
Call Ident = [Object: tObjects] [level: short] .
If While = [Label1] [Label2] .
Read Write Binary = [TypeCode: short] .
Expr = Type Co: Coercions .
Index = type: Type .

END Output

Puma 24

Appendix 2.2: Generation of Intermediate Code

TRAFO ICode TREE Tree Definitions PUBLIC Code

EXTERN
ADD BoolType CHK ENT Emit EmitReal FJP FLT FalseCode INV IXA IntType JMP JSR
LDA LDC LDI LES MST MUL REA RET RealType STI SUB TrueCode TypeSize WRI

GLOBAL {
include "Tree.h"
include "Definitions.h"
include "Types.h"
include "ICodeInter.h"
}

PROCEDURE Code (t: Tree)

MiniLax (Proc) ?
Code (Proc);
.

Proc (Next := Next:Decls (Proc3 (ParSize := ParSize, DataSize := DataSize), ..),
Decls := Decls, Stats := Stats) ?

Emit (ENT, DataSize - ParSize, 0);
Code (Stats);
Emit (RET, 0, 0);
Code (Decls);
Code (Next);
.

Var (Next := Next) ?
Code (Next);
.

Assign (Next, Adr, Expr, _) ?
Code (Adr); Code (Adr::Co);
Code (Expr); Code (Expr::Co);
Emit (STI, 0, 0);
Code (Next);
.

Call (Next, Actuals, _, _, Proc3 (Level := Level, Label := Label,
ParSize := ParSize), level) ?

Emit (MST, level - Level, 0);
Code (Actuals);
Emit (JSR, ParSize - 3, Label);
Code (Next);
.

If (Next, Expr, Then, Else, Label1, Label2) ?
Code (Expr); Code (Expr::Co);
Emit (FJP, Label1, 0);
Code (Then);
Emit (JMP, Label2, 0);
Code (Else);
Code (Next);
.

While (Next, Expr, Stats, Label1, Label2) ?
Emit (JMP, Label2, 0);
Code (Stats);
Code (Expr); Code (Expr::Co);
Emit (INV, 0, 0);
Emit (FJP, Label1, 0);
Code (Next);
.

Puma 25

Read (Next, Adr, TypeCode) ?
Code (Adr); Code (Adr::Co);
Emit (REA, TypeCode, 0);
Emit (STI, 0, 0);
Code (Next);
.

Write (Next, Expr, TypeCode) ?
Code (Expr); Code (Expr::Co);
Emit (WRI, TypeCode, 0);
Code (Next);
.

Actual (Next, Expr) ?
Code (Expr); Code (Expr::Co);
Code (Next);
.

Binary (_, _, _, Lop, Rop, {Times}, TypeCode) ?
Code (Lop); Code (Lop::Co);
Code (Rop); Code (Rop::Co);
Emit (MUL, TypeCode, 0);
.

Binary (_, _, _, Lop, Rop, {Plus}, TypeCode) ?
Code (Lop); Code (Lop::Co);
Code (Rop); Code (Rop::Co);
Emit (ADD, TypeCode, 0);
.

Binary (_, _, _, Lop, Rop, {Less}, TypeCode) ?
Code (Lop); Code (Lop::Co);
Code (Rop); Code (Rop::Co);
Emit (LES, TypeCode, 0);
.

Unary (Expr := Expr) ?
Code (Expr); Code (Expr::Co);
Emit (INV, 0, 0);
.

IntConst (Value := Value) ? Emit (LDC, IntType, Value); .
RealConst (Value := Value) ? EmitReal (LDC, RealType, Value); .
BoolConst (Value := {true}) ? Emit (LDC, BoolType, TrueCode); .
BoolConst (Value := {false}) ? Emit (LDC, BoolType, FalseCode); .

Index (_, _, _, Adr, Expr, Array (Type, Lwb, Upb, _)) ?
Code (Adr); Code (Adr::Co);
Code (Expr); Code (Expr::Co);
Emit (CHK, Lwb, Upb);
Emit (LDC, IntType, Lwb);
Emit (SUB, IntType, 0);
Emit (IXA, TypeSize (Type), 0);
.

Ident (_, _, _, Ident, Var3 (Level := Level, Offset := Offset), level) ?
Emit (LDA, level - Level, Offset);
.

Content (Next) ?
Emit (LDI, 0, 0);
Code (Next);
.

IntToReal (Next) ?
Emit (FLT, 0, 0);
Code (Next);
.

Puma 26

Appendix 2.3: Procedures for Type Handling

TRAFO Types PUBLIC

Reduce /* return type without any ref levels */

ReduceToRef /* return type with ref level 1 */

Reduce1 /* return type with 1 ref level removed */

RefLevel /* return number of ref levels of a type */

IsSimpleType /* check whether a type is simple */

IsCompatible /* check whether two types are compatible */

IsAssignmentCompatible /* check whether two types are */
/* assignment compatible */

ResultType /* return the type of the result of */
/* applying an operator to two operands */

CheckParams /* check a formal list of parameters */
/* against an actual list of parameters */

GetElementType /* return the type of the elements of */
/* an array type */

TypeSize /* return the number of bytes used for */
/* the internal representation of an */
/* object of a certain type */

Coerce /* returns the coercion necessary to convert */
/* an object of type ’t1’ to type ’t2’ */

EXTERN nBoolean Error nNoCoercion

GLOBAL {
include "Errors.h"
include "Positions.h"
include "Tree.h"

define Error(Text, Position) Message (Text, xxError, Position)

static tTree nBoolean, nNoType, nNoCoercion;
}

BEGIN {
nBoolean = mBoolean ();
nNoType = mNoType ();
nNoCoercion = mNoCoercion ();

}

FUNCTION Reduce (Type) Type
Ref (t) RETURN Reduce (t) ?.
t RETURN t ?.

FUNCTION ReduceToRef (Type) Type
Ref (t:Ref) RETURN ReduceToRef (t) ?.
t:Ref RETURN t ?.

Puma 27

t RETURN t ?.

FUNCTION Reduce1 (Type) Type
Ref (t) RETURN t ?.
t RETURN t ?.

FUNCTION RefLevel (Type) int
Ref (t) RETURN RefLevel (t) + 1 ?.
_ RETURN 0 ?.

PREDICATE IsSimpleType (Type)
Array ? FAIL; .
_ ?.

PREDICATE IsCompatible (Type, Type)
Integer , Integer ?.
Real , Real ?.
Boolean , Boolean ?.
Array (t1, Lwb, Upb, _), Array (t2, Lwb, Upb, _) ;
Ref (t1) , t2 ;
t1 , Ref (t2) ? IsCompatible (t1, t2); .
NoType , _ ?.
_ , NoType ?.
ErrorType , _ ?.
_ , ErrorType ?.

PREDICATE IsAssignmentCompatible (Type, Type)
Integer , Integer ?.
Real , Real ?.
Real , Integer ?.
Boolean , Boolean ?.
Ref (t1) , t2 ;
t1 , Ref (t2) ? IsAssignmentCompatible (t1, t2); .
NoType , _ ?.
_ , NoType ?.
ErrorType , _ ?.
_ , ErrorType ?.

FUNCTION ResultType (Type, Type, int) Type
t:Integer , Integer , { Plus } RETURN t ?.
t:Real , Real , { Plus } RETURN t ?.
t:Integer , Integer , { Times } RETURN t ?.
t:Real , Real , { Times } RETURN t ?.
Integer , Integer , { Less } RETURN nBoolean ?.
Real , Real , { Less } RETURN nBoolean ?.
t:Boolean , Boolean , { Less } RETURN t ?.
t:Boolean , _ , { Not } RETURN t ?.
Ref (t1) , t2 , o ;
t1 , Ref (t2) , o RETURN ResultType (t1, t2, o) ?.
t:NoType , _ , _ RETURN t ?.
_ , t:NoType , _ RETURN t ?.
ErrorType , _ , _ RETURN NoType ?.
_ , ErrorType , _ RETURN NoType ?.
.. RETURN ErrorType?.

PROCEDURE CheckParams (Actuals, Formals)
NoActual , NoFormal ?.
NoActual (Pos), _ ?

Error ("too few actual parameters" , Pos); .
Actual (_, Expr (Pos, ..)), NoFormal ?

Error ("too many actual parameters" , Pos); .

Puma 28

/* alternative 1 */

Actual (NextA, Expr (Pos, TypeA, ..)), Formal (_, _, NextF, _, _, TypeF) ?
{

if (! IsCompatible (TypeA, TypeF))
Error ("parameter type incompatible", Pos);

if (! (RefLevel (TypeF) - 1 <= RefLevel (TypeA)))
Error ("variable required" , Pos);

};
CheckParams (NextA, NextF); .

/* alternative 2 */

Actual (NextA, Expr (Pos, TypeA, ..)), Formal (_, _, NextF, _, _, TypeF) ?
! IsCompatible (TypeA, TypeF);
Error ("parameter type incompatible" , Pos);
REJECT; .

Actual (NextA, Expr (Pos, TypeA, ..)), Formal (_, _, NextF, _, _, TypeF) ?
! (RefLevel (TypeF) - 1 <= RefLevel (TypeA));
Error ("variable required" , Pos);
REJECT; .

Actual (NextA, Expr (Pos, TypeA, ..)), Formal (_, _, NextF, _, _, TypeF) ?
CheckParams (NextA, NextF); .

/* alternative 3 */

Actual (NextA, Expr (Pos, TypeA, ..)), Formal (_, _, NextF, _, _, TypeF) ?
CheckCompatible (Pos, TypeA, TypeF);
CheckRefLevel (Pos, TypeA, TypeF);
CheckParams (NextA, NextF); .

PROCEDURE CheckCompatible (tPosition, Type, Type)
_ , t1 , t2 ? IsCompatible (t1, t2); .
Pos , .. ? Error ("parameter type incompatible" , Pos); .

PROCEDURE CheckRefLevel (tPosition, Type, Type)
_ , t1 , t2 ? RefLevel (t2) - 1 <= RefLevel (t1); .
Pos , .. ? Error ("variable required" , Pos); .

FUNCTION GetElementType (Type) Type
Array (t, ..) RETURN t ?.
_ RETURN NoType ?.

FUNCTION TypeSize (Type) int
Array (t, Lwb, Upb, _) RETURN (Upb - Lwb + 1) * TypeSize (t) ?.
_ RETURN 1 ?.

FUNCTION Coerce (t1: Type, t2: Type) Coercions
Ref (T1) , Ref (T2) RETURN Coerce (T1, T2) ?.
Integer , Real RETURN IntToReal (nNoCoercion) ?.
Ref (T1) , T2 RETURN Content (Coerce (T1, T2)) ?.
.. RETURN nNoCoercion ?.

Puma 29

Appendix 3: Equality Operations

Appendix 3.1: C

define equalint(a, b) a == b
define equalshort(a, b) a == b
define equallong(a, b) a == b
define equalunsigned(a, b) a == b
define equalfloat(a, b) a == b
define equaldouble(a, b) a == b
define equalbool(a, b) a == b
define equalchar(a, b) a == b
define equaltString(a, b) strcmp (a, b)
define equaltStringRef(a, b) a == b
define equaltIdent(a, b) a == b
define equaltSet(a, b) IsEqual (& a, & b)
define equaltPosition(a, b) Compare (a, b) == 0

Appendix 3.2: Modula-2

define equalINTEGER(a, b) a = b
define equalSHORTINT(a, b) a = b
define equalLONGINT(a, b) a = b
define equalCARDINAL(a, b) a = b
define equalSHORTCARD(a, b) a = b
define equalLONGCARD(a, b) a = b
define equalREAL(a, b) a = b
define equalLONGREAL(a, b) a = b
define equalBOOLEAN(a, b) a = b
define equalCHAR(a, b) a = b
define equalBITSET(a, b) a = b
define equalBYTE(a, b) a = b
define equalWORD(a, b) a = b
define equalADDRESS(a, b) a = b
define equaltString(a, b) Strings.IsEqual (a, b)
define equaltStringRef(a, b) a = b
define equaltIdent(a, b) a = b
define equaltText(a, b) FALSE
define equaltSet(a, b) Sets.IsEqual (a, b)
define equaltRelation(a, b) Relations.IsEqual (a, b)
define equaltPosition(a, b) Positions.Compare (a, b) = 0

References

[Gro90] J. Grosch, Specification of a Minilax Interpreter, Compiler Generation Report No.
22, GMD Forschungsstelle an der Universit

..
at Karlsruhe, Mar. 1990.

[Gro91] J. Grosch, Ast - A Generator for Abstract Syntax Trees, Compiler Generation
Report No. 15, GMD Forschungsstelle an der Universit

..
at Karlsruhe, Sep. 1991.

Puma 1

Contents

1. Introduction .. 1

2. Overview .. 1

3. Input Language .. 2

3.1. Notation ... 3

3.2. Lexical Conventions .. 3

3.3. Structure ... 4

3.4. Target Code .. 4

3.5. Subroutines .. 5

3.6. Types .. 6

3.7. Rules .. 6

3.8. Patterns ... 8

3.9. Expressions .. 9

3.10. Statements .. 10

3.11. Equality Operations ... 12

3.12. Begin Operations ... 13

3.13. Output Statements .. 13

4. Scopes .. 13

5. Output .. 14

6. Usage .. 14

Appendix 1: Syntax Summary ... 17

Appendix 2: Examples from MiniLAX ... 22

Appendix 2.1: Abstract Syntax .. 22

Appendix 2.2: Generation of Intermediate Code ... 24

Appendix 2.3: Procedures for Type Handling ... 26

Appendix 3: Equality Operations .. 29

Appendix 3.1: C ... 29

Appendix 3.2: Modula-2 .. 29

References .. 29

